考研数学各知识点习题常见解题思路
2008年07月18日
来源:考研教育网
用微信扫描二维码
分享至好友和朋友圈
分享至好友和朋友圈
掌握出题者的规律就会了解各种题型,了解各种题型的解题思路,就会更快捷地获得高分。那么,在考研数学的解题思路上有哪些更快捷的定理呢?让我们一起来看一下。
一、高等数学
1.在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式。
2.在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下。
3.在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理。
4.对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)。
二、线性代数
1.题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E.
2.若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。
3.若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出因子aA+bE再说。
4.若要证明一组向量a1,a2,…,as线性无关,先考虑用定义。
5.若已知AB=0,则将B的每列作为Ax=0的解来处理。
6.若由题设条件要求确定参数的取值,联想到是否有某行列式为零。
7.若已知A的特征向量ζ0,则先用定义Aζ0=λ0ζ0处理。
8.若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理。
【下一页】